HSR and Self-driving vehicles

Christian Wolmar writes: Innovation ignored at our peril :

“One of the reasons for my scepticism about HS2 is on the basis that it does not take into account future development of technology. Just look at how technology has changed since 1993 when mobile phones had barely taken root, Google, Facebook and Twitter were but twinkles in their founders’ eye and digital TV was just starting. Will there really be enough people wanting to pile into what are likely to be expensive trains in 20 years time to justify the huge expenditure on this project?
And here’s where I stick my neck out. The next big technology, one with such huge implications that it is impossible to being to predict them, is driverless cars. Google, which is investing billions in the project, announced back in August that its fleet of more than a dozen driverless cars had completed 300,000 miles – ten times round the world – without an accident. The cars have driven through San Francisco and through various parts of California and Nevada – where a law has been passed allowing them – and while there are no plans to produce them commercially yet, their time will inevitably come.
Perhaps they will start by being driven only on motorways but even that would have enormous consequences. It would combine many of the advantages of train travel with the flexibility of car use. Think trucks, too. The economics of transport would change as radically as they did when the railways were first developed. The time frame may be a decade or two, but the consequences will be much more far reaching than, say, the much talked about electric cars. The driverless car – or rather motor vehicle – is the innovation that we ought all to be taking into account in our future thinking.”

It’s Toasted

MaunaLoa
Global Warming needs an advertising campaign. While those trying to stop it are well-funded, and many organizations try to deny it or minimize its effects, almost no one is selling us on its merits. Global warming opponents make is seem like the earth is going to become a dried up desert-like husk. One of my friends insists it’s too late, the Earth is Toast.
Embrace that idea. Instead of the “Earth is toast”, we need to say It’s Toasted, giving the new and improved earth a warm and cozy feel, like a hot breakfast on a Winter’s Day. And every day, we are slightly more and more toasted.

Just-in-time consumption: Does the `pint of milk test’ hold water?

Now at streets.mn: Just-in-time consumption: Does the `pint of milk test’ hold water?:

“As with stores, houses too are getting larger over the long run. New suburban homes have more space to store goods in-house. While urban residents export storage to common stores, suburban residents more likely to have second freezers, have more space to store stuff.”

This is an update from a post first published in 2007.

StarTrib on Gender and Driving, and the Oh-so-timely Death of “Woman Driver” Jokes – Network Distance

Jessica Schoner @ Network Distance on: StarTrib on Gender and Driving, and the Oh-so-timely Death of “Woman Driver” Jokes

She writes

“Given all these external forces that influence travel needs and choices, my conclusion is that there is likely no inherent physiological difference causing the difference in travel behavior; or if a biological difference exists, it is marginal and unmeasurable relative to these larger forces. These social, economic, and cultural forces shape the stereotypes of male and female drivers that we are so familiar with.”

I agree culture is important. I disagree that physiological differences don’t have effects. In particular, I think culture has a large biological component (culture and biology are mutually co-evolving systems). Risk taking has clear biological elements to it, and obviously drives a lot of traffic safety issues.

With more total driver’s licenses, women passing men on the roads

Aimee Blanchette @ Strib: With more total driver’s licenses, women passing men on the roads :

The jokes about dreadful female drivers can officially take a back seat.
For the first time ever, more women than men have driver’s licenses nationwide. This gender gap reversal means safer roads and less pollution.
That’s according to the University of Michigan’s Transportation Research Institute, which says that in 2010, 105 million women held licenses, compared with 104 million men. Women are more likely to purchase “smaller, safer and more fuel-efficient vehicles” and “drive less and tend to have a lower fatality rate per distance driven,” said Michael Sivak, the study’s co-author.
The stereotype, however, has been a joke as long as women have been driving.
“It wasn’t true and I don’t think people find it funny anymore,” said David Levinson, a professor in the Department of Civil Engineering at the University of Minnesota.“Statistics have long shown that the average woman is a slightly safer driver than the average man.”

Accessibility Now and in the Future

acc_jobs_autoAM_taz_30_2010

The Webcast for Accessibility Now and in the Future is now available. (Andrew Owen presented it at CTS yesterday). The presentation is also available for download.
The full research reports are:

Sidewalks are Hotting Up

Brendon writes in:

Heating a sidewalk section has climate change implications. I calculate the 26-year cost of your section at $8,722 at the low end and $9,708 at the high end (depending on the discount rate you assign to the future impacts of climate change. I tend to lean towards the higher end). This means your break-even point is 8% to 20% higher, meaning maybe 173 to 192 pedestrians per day. Of course with a carbon tax in place, there would likely be more walkers in some places, meaning heating the sidewalks become feasible in more places.
Now, if you could use waste heat that hasn’t been previously captured to heat sidewalks, as they are proposing to do with the new “interchange” plaza and HERC steam, the carbon footprint becomes effectively zero additional. Much less per kWh/BTU.
Other interesting facts, heating all the sidewalks in Minneapolis with electricity from the grid for one year would produce more greenhouse gases than the disposal of all our solid waste and wastewater does over the same time period. The additional energy consumption would be equal to about 1/3 of the current annual consumption in all residential properties in the city. It would increase the city’s annual electricity consumption by 8%.

He nicely identifies a feedback effect, heating up sidewalks will create more emissions, which will heat the atmosphere, which will eventually negate the need for heating up sidewalks. There must be an equilibrium point here.
More seriously, the use of waste heat is a great idea, especially near the HERC. The problem would be building infrastructure to distribute that more broadly. There might also be waste heat from wastewater (which is still liquid in the winter, and thus warmer than the ground around it) which we don’t capture, or let go to roads, by running sewers under the streets rather than the sidewalks.

Walkable Ice

In the absence of significant global warming, Minnesotans still need to contend with ice on the sidewalks (to be clear, in the presence of significant global warming, we would have other problems; and in the presence of significant global cooling, we would face snow and glaciers rather than freezing rain and ice).
My own house suffers this problem, despite (or because of) snow clearance, ice re-forms on the sidewalks and steps, or freezing rain falls on the cleared sidewalks, making them slick, rather than on snow-covered sidewalks, making them crunchy. Further, water drips from the house and gutters because of ice dams, and then freezes on the ground.
My alma mater, Georgia Tech, while not typically subject to much snow or ice, has many sidewalks just above steam-heat pipes, which would clear those sidewalks pretty readily in most conditions. The University of Minnesota does a pretty good job with snow clearance, all things considered, using a lot of labor and snow clearance machines in the process.
Ice clearance is hard in this freeze-melt cycle, especially when the water has no where to drain because (1) the sidewalks are convex (along either width or length), (2) the boulevards are covered in snow creating no place for run off to go and creating a source for new melted water, (3) the storm drains are covered in snow, and (4) the ground is still frozen and/or the soil above the freeze line is super-saturated.
I see a lot of attention to ice-free roads, and very little for ice-free sidewalks. This would greatly enhance walkability, reduce the likelihood of severe injury, and increase the number of pedestrians.
There are a variety of ways to address icy sidewalks:

  • Mechanical: clearing sidewalks with shovels and pick-axes and snow-bots.
  • Friction: Sand, Grit, Gravel make the ice more walkable (by increasing friction);
  • Chemical: Salt (reduces ice via melting);
  • Radiant: heated sidewalks (using a variety of techniques);
  • Protection: covered sidewalks; and

If we consider the cost of an icy sidewalk equal to the probability of a fall multiplied by the cost of a fall, multiplied by the number of people who face that probability per day, times the number of days the sidewalk is icy, we can get a sense of the amount we should invest to avoid the ice.
Let’s say I fall once a year on the ice (typical), after traveling 2.6 km * 2 times a day * 10 ice days = 52 km. My fall rate: is 1 fall per 52 km of ice.
For a house with 10 m of frontage, with 100 pedestrians a day, it gets 1 km of pedestrian traffic per day. Once every 52 icy days, it will see someone fall.
The cost of a fall is unclear, since most falls are unreported. For reported falls which require medical care, the estimate is on the order of $10,000. Let’s assume 10% of falls require medical attention, meaning the average cost per fall is $1,000.
This implies that every 52 icy days (once every 5.2 years if there are 10 icy days per year), each house with icy sidewalks imposes $1,000 in costs. In that case, if we want to minimize social costs, we should be willing to invest $19 day in effective ice clearance. This is about an hour of labor (or two hours of undergraduate labor) to operate simple machines plus some cheap (Friction or Chemical based) treatments). Unfortunately, I am unclear whether $19/day is effective.
We could add delay costs, due to people walking slower on ice, which I estimate to be about a 10% reduction in walking speed. With a travel speed typically of 1.44 m/s, we might decrease that to 1.3 m/s. So instead of the 100 pedestrians taking 7 seconds each to walk in front of the house, they are taking 7.7 seconds. That is 70 person-seconds per day, which has an economic value of (@ $15/hour) of $0.30 per day, two orders of magnitude lower than the fall costs, and so not really worth discussing further.
But can we prevent the ice from forming?
For $1000 every 5.2 years, we get $5000 for a 26 year expected life of a capital investment. If we can make a capital investment of less than $5000 to eliminate falls on our public sidewalk, it would be socially worthwhile.
The cost of heating sidewalks is about $20 per square foot (or about $215 per square meter). A 10 meter by 2 meter sidewalk is 20 meters square, giving us a cost of $4305.
We must consider operating costs, which are estimated at $.60/hour. If it is operating 240 hours per year (this is a guess, I don’t know how long it needs to operate to keep the sidewalk ice free), this is $144 year. (You might run it to melt snow, but that has fewer benefits, just avoiding shoveling, not reduced falling in this simple model, so I don’t consider that). $144 per year is $3744 over 26 years (no discounting), so is a large fraction of the capital costs.
Unfortunately, $4305+$3744 > $5000, so 100 pedestrians is not enough to justify heating. However 160 pedestrians would be a break-even point.
Covering the sidewalks (200m of roofing) could cost $80/square foot ($860/square meter). This lasts 15 years. For 20 square meters, this costs $17,200, well out of range for our residential sidewalk if the only objective is ice reduction, especially since it only lasts 15 years. It might have other benefits, such as reducing our exposure to nature and street-life though.
Policy recommendation: Use student labor to clear sidewalks with low pedestrian flows. Heat sidewalks which have high pedestrian flows. Cover sidewalks with very high pedestrian flows.
Yes, I did fall this year. This post was written between my vertical and horizontal positions, so I apologize in advance for its rushed nature.

Department of Accessibility

Brendon Slotterback responds to Andrew Owen’s post yesterday at Street.MN at Net Density on a Department of Accessibility :

“What if instead of a Department of Transportation we had a Department of Accessibility and it’s mission was to improve accessibility while meeting environmental standards, building resilient systems, and being economically viable? I bet it would look at lot different than our current DOTs (hint: it would do a lot more with land use).”

I think this compares favorably against Richard Florida’s proposal for a Department of Cities.
The Department of Accessibility is conceived of as at the state (or metropolitan) level, where the decision making for transportation does (and should) occur and where decision making for land use might occur (now it is mostly local). In contrast, the Department of Cities is a federal initiative, without a clear reason as to why Cities (or any specific places) are a federal responsibility (since the benefits of improving any given city are almost all local).