Emissions, Equilibrium, and the $10 Bill

On February 1 (at 6:05 am) I found a BART card with $1.35 of money still on it on Sacramento Avenue near the North Berkeley BART station. I picked it up and used it. In economics there is the parable that you never find $10 bills on the ground, because someone would have picked it up already. And that of course is true in a steady state where no one ever drops another $10 bill. Eventually they will all be picked up. But if someone does drop a bill, it is on the ground until someone picks it up.

The most charitable view of emissions, and it doesn’t matter which pollutant (e.g. the EPA criteria NOx, SOx, VOC, CO, PM10, PM2.5, or even CO2, among others), is that nature has not yet adapted to take advantage of the changed environment. If we increase nitrogen in the air slightly, we expect life will evolve over time to be slightly more nitrogen-phillic somehow. Those gene-lines that manage this evolution survive, those that don’t die off. The problem of course for big slow species like large mammals, or trees, is that it takes a long time (many generations, hundreds, thousands, tens of thousands of years) to evolve in a way that is well-adapted to the new environment. So after a sudden change or shock, a species may find its way to a new equilibrium, assuming there are no other shocks or external changes to the system, or be beaten to its appropriate niche by some other species, and go extinct.

But life itself is a disequilibrating process. Humans (and a few other species) for instance invent “technologies” (from using sticks for digging, or rocks for breaking things, to fire or iPhones). These technologies change the environment for humans and other species. If we did that and stopped, an equilibrium could possibly be found. But we continue to invent.

Further, the earth itself is not a closed system. We are being continuously showered by radiation from the sun (you know, light and heat and all), (which we adapt to, assuming it is roughly constant). The earth is also periodically showered by the detritus of the universe (meteors and asteroids). These add to the disequilibrium we face, and are reputed to have done in the dinosaurs.

So it is one thing to say life will adapt to the changes in the environment humans create, undoubtedly some life will do better than others unless we manage to extinguish it all. The question is how long it takes to come to a steady state ( without any external shocks).

Should we privilege the “steady state” ante-Industrial Revolution vs some current or future “steady state”. That seems to me an entirely arbitrary preference. By restoring life to some elysian past we are condemning those species that evolved faster and co-evolved with our technology (from chickens and cows to pigeons and squirrels, among the larger life forms). To say this is the perfect end-state now diminishes possibilities yet to be.

What is our objective? Preservation of the existing mix of species, restoration of some past mixture, maximization of total biomass, maximization of human biomass? Unless people can agree on what it is we want to achieve, the means (pollute, don’t pollute) will remain unsolved. To say “Save the environment” begs the question of which “environment” we are trying to save.

However, if we think of this in property rights terms, we can either define the commons as unowned (which quickly degenerates to a bad outcome), or define it as owned by everyone, as if we are all shareholders in the commons, and the proxy is held by the government (or governments) (1).

In that case, individuals (and firms) have no inherent right to pollute (which we might define as measurably changing the chemical composition of the air (water, land) at some fixed distance, say 10m, at any rate some distance such that breathing does not count as pollution, but tailpipe emissions do). Instead of trying to geo-engineer an ideal world, which is beyond our abilities anyway, even if we could agree upon on it, we would regulate the inputs to that future world in the form of regulating pollution. Nature will then evolve to whatever it evolves to, with a minimal additional influence from humans. We might hope it turns out ok.

The transition from the present “environment as an unowned commons” into which we can dump anything to an “environment as communally owned property” into which we can dump nothing without permission or penalty will obviously be a difficult one. Many processes that were efficient in the absence of pollution prohibitions and penalties are inefficient in their presence. But crisis creates opportunity, and for every old-style industry and behavior the new regime obliterates, a new technology and way of operating arises.

This is the logical outcome of the <a href=”https://en.wikipedia.org/wiki/Enclosure”>enclosure movement</a>, which has been steadily assigning ownership to the unowned over the course of human history.


(1) We could have an alternative, where the environment is somehow owned by selected individuals instead of as a commons or by nobody, but carving up the air is much harder than carving up the land, since air moves much faster than earth.

One thought on “Emissions, Equilibrium, and the $10 Bill”

Comments are closed.